‘Lives of Living Death’: The Reproductive Lives of Slave Women in the Cane World of Louisiana

Richard Follett

This paper examines the seasonality of childbirth among slave women and addresses the relationship between seasonal workloads, nutrition, and pregnancy on large sugar plantations in nineteenth-century Louisiana. Unlike the rest of the American South, where the slave population grew, bondspeople in southern Louisiana experienced natural population decrease. This derived in part from imbalanced sex ratios, but as this article shows, conceptions peaked during the annual harvest season but fell away at other times due to nutritional stress, overwork, heat, and exhaustion. By combining plantation sources with contemporary scholarship on reproductive physiology, the article places Louisiana’s reproductive history in contest and establishes the limits sugar production imposed on the slave women’s capacity for childbirth.

Mincing few words on the evils of slavery in the sugar mills of Louisiana, George William Featherstonhaugh described the slaveholding plantocracy as ‘white men with liberty and equality in their mouths,’ driving African Americans ‘to perish, [there] where the duration for a sugar mill hand does not exceed seven years’. The hellish nature of sugar work condemned those in the cane fields to ‘the lower circle in Dante’s Hell of Horrors,’ where the slave — Francis Kemble Butler observed — seemed ‘to have reached the climax of infernal punishment.’ Ex-slave Frederick Douglass concurred, noting that Louisiana’s grisly reputation as a ‘life of living death’ instilled terror and trepidation within the African American community. Those unfortunate enough to be sold there ‘cried out with one voice as though the heavens and earth were coming together’, former bondsman Jacob Stroyer remembered, for ‘Louisiana was considered by the slaves as a place of slaughter.’

Louisiana’s reputation as that ‘old debble Lousy Anna’ haunted the slave community. Along the Mississippi, its tributaries, and bayous in southern portions of the
state, enslaved African American toiled on industrial-scale plantations where cane farming and sugar production advanced at a punishing rhythm. Located on the northern fringe of the Caribbean sugar producing belt, Louisiana’s sporadically icy climate compelled planters to set a premium on cutting and processing the canes before the first killing frosts descended in November or December. Facing acute ecological risks and a volatile Gulf climate, planters ordered their harvest crews, including most of the women they owned, into the fields in mid-October or early November. For the following six to ten weeks, these agricultural factories operated round-the-clock as enslaved women and men worked feverishly to cut and crush the crop. Sixteen- and eighteen-hour shifts taxed physical reserves and contributed to grisly levels of mortality. Thomas Hamilton testified to the human wastage of the cane fields when he concluded that sugar cultivation ‘was only carried on at an appalling sacrifice of life.’ During the annual harvest or grinding season, Hamilton observed, ‘the fatigue is so great that nothing but the severest application of the lash can stimulate the human frame to endure it.’ Fully cognizant that planters impelled their slaves to work at a ferocious pace, Claude Robin added that the slaves awoke long before dawn and toiled late into the night before finally returning to their quarters. The exhausting discipline of the sugar world, Robin deduced, checked slave fertility and elicited atrocious rates of demographic decrease. ‘The gloomy melancholy of these unfortunate people,’ the Frenchman concluded, was entirely understandable, for on a plantation of 20 slaves, deaths surpassed live births by such a degree that within two decades the slave force had mostly perished.²

Louisiana slavery’s morbid history was unique in the American South. In the tobacco and cotton districts, the slave population grew swiftly, but in the cane world, the decennial natural growth rate for the 1850s may have been as low as six or seven per cent, a figure only one-fourth the Southern mean and similar to that of the dwindling populations of the West Indies. And also like the Caribbean, Louisiana’s appalling demographic record derived from the specific labour requirements of producing sugar, the dearth of women, and high rates of infant mortality. Those few bondswomen who had the misfortune of being sold to Louisiana’s cane world experienced low fertility rates, gave birth to correspondingly few children, and suffered high maternal and infant mortality. Female slaves, in particular, suffered under the sugar barons’ heavy physical labour and inadequate nutrition, particularly a diet deficient in protein, which led to abnormally low levels of conception, depressed libido, and provoked miscarriages.³

Recent scholarship has frequently underscored the agency of slave women, particularly in regard to their capacity to undermine the slaveholders’ narrow definition of them as physical and reproductive labour. Despite the enormous burdens that enslavement imposed on them, such scholars argue, bondswomen challenged the misogynist assumptions that underpinned plantation slavery and practised — historian Barbara Bush contends — ‘psychological contraception.’ By consciously avoiding pregnancy or through gynecological resistance, black women reclaimed their own bodies, frustrated the planters’ pro-natalist policies, and in turn defied white male constructions of their sexuality. Whether swallowing abortifacients such as calomel
and turpentine or chewing on natural contraceptives like cotton roots or okra, slave women wove contraception and miscarriages through the dark fabric of slave oppositional culture. Enslaved women who resisted the planters’ untramelled sexual aggression in these ways were undoubtedly lionized by fellow bondswomen as gritty survivors, but few of those in the sugar country were able to overcome the destructive ecological and nutritional factors of the sugar regime. Ultimately, the elemental power of Louisiana’s slaveholding order defined the capacity of slave women to conceive and deliver their offspring. The marked seasonality of pregnancy and childbirth on the plantations stands as testimony to the distorting intensity of Louisiana sugar.

The impact of the labour process on shaping the fertility of slave women has long received scholarly attention. Indeed, as William Taylor reported to the British House of Commons in 1832, the decrease in the slave population was ‘materially affected by the nature of the employment’ on the Jamaican cane estates. While some scholars of the American South, notably Michael Tadman, have addressed the overall negative effect of sugar cultivation and Louisiana slaveholders’ predilection for male workers on slave fertility (using live births as a proxy), this essay examines the specific physiological mechanisms affecting slave women subject to the harsh regimen of sugar. In the Louisiana cane districts inadequate diet, excessive workloads, climate, and hormonal imbalances all but defeated fecundity (the biological capacity for reproduction).

Reproductive Physiology under Assault

As physiologists indicate, heavy physical work undermines reproductive fitness, specifically ovarian function, and thus limits success in procreation. Intensely fit female ballerinas, athletes and military recruits frequently experience delayed menarche, irregular menstrual cycles, and amenorrhea (cessation of menstruation). Although farm labour hardly qualifies as vigorous athletic training, research conducted among rural Nepali women indicates that seasonal increases in heavy physical work suppress progesterone levels and limit ovarian function. To assess reproductive readiness, physiologists commonly measure levels of progesterone. The ovary secretes this hormone in the two weeks after ovulation, and it is the subsequent withdrawal of progesterone which allows menstruation. Higher levels of progesterone during this ‘luteal phase’ indicate that women have ovulated and are in a fertile state. During the Nepalese monsoon, when women laboured on agricultural tasks for more than eight hours per day, they lost weight and their progesterone levels dropped, indicating a reduction in fecundity derived from the combination of extreme labour and related weight-loss. Parallel studies on Polish agricultural workers underscore that physical exertion, even among well-fed women, reduces progesterone levels and suppresses ovarian function. While exercise-induced weight loss clearly reduced progesterone levels among marginally nourished women in Nepal, the Polish evidence strongly indicates that energy expenditure alone can induce seasonal troughs in the reproductive fitness of well-fed females.

Although the antebellum sugar lords measured the physical strength of their human property by varying indices, they of course left no progesterone samples for
consideration by historians. In their plantation registers, however, they recorded live
births and thus provided the modern observer with a proxy to consider conception
rates and ovarian function in the slave community. By relying on birthdates as the
principal data, we can display only the seasonality of conceptions which resulted in
successful births. Although, it is not feasible to track the seasonality of miscarriages
or abortions (be they spontaneous or induced by the bondswoman), Figure 1 sum-
marizes recorded births by months and estimates the probable months of conception
of 1,223 slave women on ten Louisiana sugar plantations over 50 years. Births include
all infants reported as born on an estate (including those who would die as babies) but
does not include early pregnancy loss to miscarriage and abortion. The line charting
imputed conceptions precedes the index of recorded births by nine months, and its
sharp increase in the harvest months of November and December indicates a surpris-
ing seasonality of reproductive success at the very time when labour proved most
draining for men and women alike.7 The November spike in conceptions, for instance,
contrasted sharply with the annual pattern where conceptions dipped below the
monthly average for seven months across the year and hovered on or just above the
average for three additional months. This concentration of conception at the height
of the exhausting season of sugar-making defies swift explanation. If the cited research
on the deleterious impact of stressful physical work on ovarian function is pertinent,
then November and December should exhibit the lowest indices of successful fertiliza-
tion. The inverse, however, turns out to have been the case!

In a parallel study of birth seasonality on the rice plantations of the Georgia and
South Carolina Low-Country, Cheryll Ann Cody concludes that one-third of the
children born there (twice the average rate) were conceived from December to
January. This pattern matched the seasonal lull in Lowcountry labour demands, as
work requirements lessened during the winter months, slaves enjoyed greater leisure
time, and the risk of malaria declined. The same winter decline in sub-tropical

Figure 1 Slave Birth and Conception Data for Louisiana Sugar Plantations

![Graph showing birth and conception data](image-url)
fevers held true in the sugar country, but Louisiana conceptions did not show the same consistency with seasonal availability of free time and relief from heavy physical exertion. If it had done, conceptions might have risen in the summer months during the ‘lay-by’ period when the sugar canes required minimal attention. The summer was not, however, a period of rest; other crops were harvested, buildings and farm equipment needed maintenance, and the vast quantity of cordage required as fuel for the steam-powered sugar mills was cut from woods in the backswamps. Despite changing workloads, the ‘lay-by’ hardly proved to be a period of peak reproductive activity, though heat and disease undoubtedly limited procreative activity. By contrast, successful reproductive behaviour peaked in the late autumn harvest months and then collapsed during the late winter and early spring periods. Either slaves engaged in diminished sexual behaviour during these months, or more probably, bondswomen were physiologically incapable of conceiving and delivering babies at term due to disease, exhaustion and poor nutrition. The planting and cultivating seasons (January to June), more than the rigours of the harvest, proved especially adverse to demographic increase as the bondspeople toiled away with a meagre diet that proved inadequate to sustain healthy procreative activity.

Among the many factors influencing annual rhythms in human reproduction, environment and nutrition prove particularly significant. Climate proved especially important in shaping the Louisiana sugar region’s reproductive calendar. First, and an obvious truism, extreme heat and humidity suppresses copulation for both women and men and lowers conception rates worldwide, ensuring that in warmer climes winter features as the prime period of reproductive activity. As late as the 1960s, researchers in New Orleans established that the stifling local climate led to suppressed ova production, decreased testosterone levels, lowered sperm counts, increased ratios of immature and defective sperm, and correspondingly produced a summer dip in conceptions. Indeed, as little as a 5°F increase in the mean August temperature prompts a decline of ten per cent in conceptions. In recent decades, the impact of air-conditioning has reduced seasonal birth differences, but in the antebellum era, the taxing effects of heat and humidity undoubtedly helped to ensure that sugar-country conception rates peaked in the late fall and early winter, as the data suggest.

Southern portions of the state, nonetheless, experienced a marked cooling in November. In all probability, this drop in temperature increased reproductive activity even among fatigued and heat-drained slaves who had just endured six months of muggy and oppressive night heat in crude wooden shacks. Around their dismal huts lolled pigs, poultry and dogs, all adding their faeces to the human waste and stagnant pools that surrounded the cabins. Within the cabins, the primary living, cooking and sleeping environment, ambient temperatures probably far exceeded open-air maximums during the lengthy summer, while providing only modest refuge from January chills. When combined with oppressive heat and sapping humidity, these spartan facilities almost certainly limited reproductive activity during the summer.

Disease generally limited the slaves’ fecundity and fertility everywhere in the Caribbean and the American South. Few bondspeople, however, lived in epidemiological environments more challenging than those residing in the Louisiana sugar
country. The hot and swampy cane fields proved perfect breeding grounds for disease and, above all, for the malaria-carrying mosquito. African-Americans possessed limited inherited immunity from *falciparum* malaria, but parasitical mutations ensured that the large number of slaves imported to the sugar region from Virginia and Maryland faced unfamiliar and virulent strains. Cholera struck periodically with still greater effect, and also yellow fever. African Americans debilitated by these diseases easily succumbed to hookworm and other diarrhoea-inducing infestations of parasites that multiplied in the stagnant pools of water in which slaves washed and from which they drew water to cook and drink. No part of the year was infection-free, though May through September proved especially unhealthy as tropical diseases spread among exhausted adult labourers and the newborn. All pre-modern humans adapted to these seasonal epidemiological dangers by conceiving during relatively narrow ‘breeding seasons.’ Often triggered by food availability in the fall harvest season, lower temperatures after the heat of summer, or reduced risk of disease during cooler nights, these ‘seasons’ reflect generations, indeed centuries, of spontaneously preferred late-summer delivery dates. The prevalence of summer infections in both West Africa and in the U.S. South in all probability enhanced the slaves’ tendency toward winter conceptions and term deliveries when temperatures began to drop later in the year.

Background Nutritional Deficits

Although the relatively high rates of conception during November and December coincided with the extreme labour demands of the harvest season, work levels remained high enough throughout the agricultural year to suppress conception in other months. Immediately after the cane was processed in December, planters put their slaves to work seeding and planting the next crop of cane, a prolonged and arduous task. During this period, slaves received neither the extra rations nor incentives that characterized the harvest season on most estates. As such, field-workers embarked upon planting with few nutritional resources to fortify them after the exhausting harvest season.

Whilst food supply varied from estate to estate, the slave diet during these routine parts of the agricultural year averaged 1 to 1.5 pecks of corn and 3.5 to 4 lbs. of pork per week per hand (approximately 9 litres of corn and 1.4 kg of meat). This monotonous diet sufficed as raw caloric intake but woefully lacked nutritional balance. Some slaves occasionally fished, trapped game and stole their owners’ livestock to supplement their owners’ rations. Additionally, slaves cultivated garden plots, but plantation records indicate that they frequently sold their produce for specie or supplies at the estate commissary. ‘Enterprising and intelligent’ planters occasionally increased rations of pork, corn, molasses, yams, and other vegetables to ensure the field hands would ‘keep healthy and strong.’ As Solon Robinson observed, these enhanced rations expressed raw self-interest. On his visit to Thomas Pugh’s Madewood estate, Robinson informed his readers in the *American Agriculturist* that working hands drew weekly rations at the top of the general range — 1.5 pecks of corn, 5.25 lbs. of
mess pork, and vegetables. Pugh’s modest generosity, however, carried a hollow ring, for the improved rations accompanied his introduction of a steam-powered mill that sharply upped the pace of labour in the cane fields. Toiling to supply the railroad that brought the freshly-cut canes to the mill and the conveyor belts that whisked them into the sugarhouse, slaves at Madewood evidently needed every ounce of energy they could obtain to keep up with the incessant pace of modern sugar processing technology. Other slaves, however, proved less well nourished, receiving daily rations of only half a pound of pork, a quantity close to the standard slave allowance and entirely lacking in nutrition. Indeed, as one Louisiana physician noted, ‘the diet of Negroes on most plantations being mostly salt pork, corn bread, and molasses – rarely eating fresh meat and vegetables – a condition of the system is thus produced closely allied to scurvy.’

By providing such limited food, estate managers barely satisfied their slaves’ caloric requirements for strenuous and heavy labour. The World Health Organization estimates that a male engaged in heavy work for eight hours burns 3,490 calories per day. The basic daily slave ration amounted to 4,056 calories and should have met this standard. But Richard Sutch has calculated that an average adult male weighing 65 kgs (143 lbs.) who slept nine hours per day, who rested for an additional three hours, and who expended two hours in eating, dressing, and other light personal activity would have burned 1,200 calories without working at all. The remaining 2,856 calories in the standard slave ration would have been expended in labour at a rate of 4.8 calories per minute. By utilizing the Christensen system of energy expenditure, Sutch maintains that slaves need have worked only ‘lightly’ to surpass the standard ration. Where planters ordered heavier work or longer hours on laborious tasks such as ridging, digging, ploughing, and preparing the land for cultivation, they had to resort to compulsion to maintain prescribed work speeds, while their slaves experienced fatigue and weight-loss as they depleted their energy stores.

During the arduous cane-planting season, African Americans required approximately 3,500–4,000 calories to perform their field duties. To meet their total energy budgets, however, slaves needed to consume up to 5,000 calories per day. Although some slaves almost certainly ate more than the basic ration, most African Americans consumed, at best, only the minimum food required for their work and, at worst, some 20–40 per cent less than they required to maintain weight and energy. The fact that enslaved men in the sugar country were younger, slightly taller, and perhaps ‘sturdier’ than slaves in other regions would have further exacerbated the inadequacies of the standard ration for vital and high-energy-consuming ‘prime field hands’, especially for those in the final stages of adolescence.

For slave women this dietary shortfall, when combined with the heavy physical exertion required of sugar work, proved particularly deleterious. Above all, they experienced a relative decline in fecundity and associated weight loss. Research conducted among contemporary Lese women in rural Zaire complements that from Nepal and Poland to suggest that ovarian function for marginally nourished females appears to be compromised by even modest weight-loss. Significantly for Louisiana slave women, modern research shows that ovarian dysfunction occurs most noticeably
in the month following weight-loss. The nutritional deprivation that female slaves experienced during the planting season is reflected in Figure 1, which suggests that conceptions dropped markedly in February and March. Climatically, these cooler months should have been a period of high conception and reproductive behaviour, yet the winter months of the new year proved disappointing in terms of conceptions carried to term in the following November. Slaves were not separated by gender for living purposes during these months, though it appears likely that excess work, inadequate diet, and probable weight-loss conspired in a vicious cycle of hunger and ovarian dysfunction. All slave women suffered the double bind of being reproductive capital and productive labour, but in Louisiana the two roles conflicted, with the latter severely impacting the former as seasonal heavy workloads, and presumed resulting weight-loss, compromised female fecundity.15

Since the low rates of conception during the spring planting season – whatever the depressive effects of heat and diseases on sexual activity – seem to reflect how physically taxing African Americans found their lives on Louisiana’s sugar plantations, it appears anomalous that the harvest, with its even longer hours and much more physically punishing workload, should have produced the increased rates of conception shown in the figure. The length and intensity of work days during October, November and December extended well beyond levels at other times of the year, as the bondspeople laboured 12–16-hour shifts at break-neck speed to cut and process the cane. The slaves then expended enormous quantities of energy that far outstripped their caloric intake from their standard ration. Considering the number of hours, collective stress, and exhaustion of this work in the hot and sticky sugar mill, it appears realistic to assume that slaves expended between 5,000 and 6,500 calories per 24 hours on working, resting, and sleeping. Table 1 charts the potential energy expenditure for 14 and 16-hour shifts across a range of assumed rates of caloric expenditure, including associated sleeping and relaxing over the daily and nightly cycle.16

The resolution of the seeming paradox of insufficient food to fuel the work demanded during harvesting and processing comes from the fact that planters provided extra quantities of energy rich molasses. Ever alert to regional variation across the South during his sojourn in Louisiana, Frederick Olmsted noted that slaves there received extra rations of flour and molasses at harvest time, while those working in the sugar house received a plentiful supply of coffee and hot molasses or ‘sirop’ as well. This sweet and sticky by-product of the production process cost the planters nothing and proved particularly appealing and energizing to the slaves. Joseph Ingraham noted, the slaves ‘revive and become robust and healthy.’ The

<table>
<thead>
<tr>
<th>Work expenditure</th>
<th>14-hour shifts</th>
<th>16-hour shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 kcal/minute</td>
<td>4,500 kcal</td>
<td>4,900 kcal</td>
</tr>
<tr>
<td>5.45 kcal/minute</td>
<td>5,300 kcal</td>
<td>5,800 kcal</td>
</tr>
<tr>
<td>6.175 kcal/minute</td>
<td>5,900 kcal</td>
<td>6,500 kcal</td>
</tr>
<tr>
<td>6.9 kcal/minute</td>
<td>6,500 kcal</td>
<td>7,200 kcal</td>
</tr>
</tbody>
</table>
caloric ‘high’ of the sugar harvest received signal attention as physicians urged that ‘it is only . . . at the rolling season when the operatives on sugar estates are observed to become fat and healthy.’ Explaining this phenomenon, Dr. Samuel Cartwright recorded that the ‘fattening qualities’ of sugar emerged most markedly among boiling house workers, who enjoyed ready access to hot cane juice. Freshly-milled liquid sugar, Cartwright maintained, proved rich in calories, while vapours inhaled from the sugar clarifiers possessed singular medicinal features that eased consumptive, catarrhal, bronchial, and dyspeptic infirmities. The most emaciated individual, Cartwright propounded in the New Orleans-based *De Bow’s Review*, would ‘soon recover their health and get fat’ after an extended spell in the sugarhouse. Even the New York periodical *Plow* cited Cartwright’s research, clarifying the palpable incongruity that slaves appeared ‘healthy’ despite working 18 hours per day on the harvest.17 Bondspeople who freely drank cane juice experienced a marked increase in calories as carbohydrate-rich sugar provides considerable energy from relatively small doses. One gram of high-grade sugar provides 38.5 kilocalories of energy; consequently, those slaves who consumed 30 grams of dissolved sugar most probably gained approximately 1,150 calories. Like today’s athletes who guzzle syrupy sports drinks, African Americans on Louisiana’s sugar plantations fuelled their energy expenditures by consuming a carbohydrate rich diet. Slaves who imbibed 30 grams (about one ounce) of sugar – approximately the same as one medium sized bottle of commercially available sports drink – received a low-volume energy jolt that fuelled muscle expenditure throughout the work-shift. Slaves who worked around the sugar kettles and consumed ‘sirop’ at will effectively gulped huge quantities of a concentrated version of a high-calorie sports drink. Planters and contemporaries were fully cognizant of sucrose’s intensely energizing effect. By rotating slaves through a revolving system of shift work, they assured that all hands gained access to the cane juice.18

Whilst sugar lords could not have calculated calories to workload, they were well aware of the benefit to them from supplementing their slaves’ diet with sucrose during the grinding season. Some slaveholders remained miserly in their weekly allowances but most recognized the association of strength and diet. Sketching overseers’ duties in the reform-minded *Sugar Plantation Record and Account Book*, Thomas Affleck warned readers that sickness often derived from negligent slave management, including inappropriate or poorly cooked food. Preventative maintenance required an ample and varied diet of ‘wholesome well-cooked food’ supplied ‘at regular hours.’ Although the slaves’ quarter never quite resembled a barrack complex, the factory compound on most Louisiana sugar estates included compact housing where the planter could maintain a watchful eye over his labourers’ every move and every ration consumed. Centralized canteen-style preparation of food further ensured that the planter could regiment the slaves’ diet as workloads peaked, while additionally saving hours that could be re-allocated to producing sugar. Albert Patterson, who grew up in Plaquemines Parish, attested to centralized meal services in at least one instance when he recalled a cook who managed a large kitchen on the estate where he had grown up and prepared meals for the slaves while they worked. On other estates, planters consolidated cooking operations prior to the cane-crushing season, while others
prepared for the impending drudgery of the harvest by directing the elderly and infirm
to cook for the hands. Although these planters focused on the potential gain in labour
from centralizing operations, their time-thrifty management also ensured that the
work gangs began each shift nutritionally prepared for its draining demands. Like
most mid-century Americans, they did not understand that these provisions were
inadequate in terms of the minerals and vitamins necessary for a nutritious diet,
but by introducing ‘sirop’ and molasses, the sugar masters at least temporarily
boosted the volume of calories available. 19

Beyond the immediate contribution of the sucrose-supplemented slave diet to pro-
duction, the increased calories also raised the bondspeople’s fertility. We have seen that
not only does malnutrition reduce female fecundity but starvation and poor diet also
delays menarche and even relatively small associated weight-loss of 10–15 per cent of
normal weight for height prompts amenorrhea. Accordingly, Louisiana slaves who
gulped cane juice or consumed extra rations during the harvest season almost certainly
attained their caloric requirements while additionally gaining ‘easily mobilized energy’
that proves indispensable for the maintenance of normal menstrual cycles. Given that
seasonal changes in food supply correlate with reproductive success, it is probable that
the slaveholder’s dietary supplements provided the bondswomen with adequate
calories and weight-gain (relative to other parts of the year) to conceive successfully.
By contrast, at other times of the year when the diet proved marginal, at best, and slave
women very likely lost weight (despite lower workloads), nutritional stress reduced
their fecundity to the low summer levels observed in the chart. The evidence thus
leads to the overwhelming conclusion that inadequate food and poor nutrition,
when combined with heavy labour duties, compromised fertility and that harvest-
season peaks in food supply in all probability overcome even more intense workloads
of those months to spur episodic demographic growth.20

Slaves toiling on Jamaica’s cane estates would have easily understood the hunger of
the enslaved population in Louisiana. As historian Kenneth Kiple indicates, malnu-
trition in the West Indian cane islands similarly suppressed human growth rates
throughout the region and in all probability led to abnormally high numbers of still-
births. But Jamaican planters, like their Louisiana neighbours, also gave their slaves
unrestricted access to cane juice during the grinding season and similarly prided them-
theselves on the momentarily healthy and cheerful appearance of their bondspeople. Yet,
as John Masterson Waddell observed, those smiles derived merely from full bellies. ‘Ere
the season closed,’ the Presbyterian missionary continued, ‘they began to suffer, were
fagged and sickly, from excessive toil and want of food.’ Waddell’s concerns rang true
throughout the sugar-producing Caribbean, including Louisiana, as environmental
factors, disease, work-load, and nutrition conspired to produce dismal records of
low-fertility, impaired fecundity, and erratic patterns of conceptions and births. In
Tobago and Berbice, for instance, births peaked in September and were at a low
from February to April. At first glance, this pattern mirrored that of Louisiana with
conceptions higher in the winter and lower in the summer. While these conclusions
tentatively confirm the climatic ‘breeding seasons’ argument, the crop season in the
Caribbean was distinct from that of Louisiana and featured peak work-loads during
the January-to-June harvest. As Barry Higman suggests, the long hours of labour during these busy months probably reduced coital activity, but once out of crop season, conceptions rose again. In essence, once work loads lessened and leisure time increased, as in the Carolina Lowcountry, the number of pregnancies began to rise. Irrespective of the additional calories imbibed in the harvest season, Higman’s evidence suggests that Caribbean sugar-producing slaves marched to a different (and more predictable) reproductive beat than their enslaved compatriots in southern Louisiana. Along the swamplike bayous of the Mississippi valley, environmental and climatic factors unquestionably shaped the slaves’ natural proclivity toward winter conceptions; more significant for the seasonal variation, however, was the temporary increase in calories relative to energy expenditure consumed during the harvest. In conclusion, the anomalous peak in harvest conceptions derived from Louisiana’s plantation elite satiating the slaves’ energy budget during the harvest but failing to do so at other key points in the agricultural cycle.

Conclusion
Elsewhere in the U.S. South family life cushioned enough slaves from the savage excesses of their masters’ drive for profits that slave populations grew. But the prospects for slave production and thus children in the sugar country were profoundly compromised by the intense demands of mechanized sugar production that slaveholders introduced in the ante-bellum years. The invasive power of sugar defined the slaves’ reproductive lives and claimed its unborn victims through failed pregnancies and stillbirths. Slave women thus faced the cruellest imposition of all on their dignity, for sugar left an enduring inheritance at almost every stage of conception, pregnancy and childbearing. Whether from reduced ovulation, hormonal imbalances, weight-loss or sheer exhaustion, sugar production in Louisiana materially harmed the slave woman’s body. The sugar regime thus bequeathed an appalling legacy of human suffering. Little wonder then, that the enslaved called it ‘old debble Lousy Anna.’

Acknowledgements
This essay is the paper presented at the conference ‘Women in Slavery’ (Colloque avignonais sur l’Esclavage et la Mains-d’oeuvre forcé/Avignon Conference on Slavery and Forced Labour, ‘La Femme et l’esclavage/Women in Slavery’ – en l’honneur de/In Honour of Suzanne Miers, du 16 au 18 octobre/16–18 Octobre 2002). A much longer version was published as ‘Heat, Sex, and Sugar: Childbearing in the Slave Quarters’, Journal of Family History (October 2003), pp.510–39. The JFH has kindly given permission to republish the article in this condensed and altered format.

Notes
Kendall, *New Orleans’ Peculiar Institution*, 1; Robin, *Voyage to Louisiana*, 240.

Although gestation varies significantly with premature and late deliveries, most obstetricians use the nine month or 270 day rule as their best working average. See, Campbell, *Work, Pregnancy*, 798. Slave birth data are drawn from Vital Register, 1832–1862, Samuel McCutcheon and James McCutcheon (and Family) Papers, Louisiana and Lower Mississippi Valley Collections, Hill Memorial Library, Louisiana State University, Baton Rouge (hereafter cited as LSU); ’Register of Births among W. J. Palfrey’s Negroes, commenced August 1843’, Palfrey (William J.) and Family Papers, LSU; Vol. 17, List of Negroes on Waterloo Plantation 1848, 1852, and Southdown Plantation, 1852, Minor, LSU; ’A Memorandum of the Births of Negro Children’, Record Book, 1817–1852, Kleinpeter (Joseph) and Family Papers, LSU; Volume 9, ’List of Mothers, Births, and Deceased’, DeClouet (Alexandre) Papers, LSU. ’A Memorandum of the Births of Negro Children’, Record Book, 1817–1852, Kleinpeter (Joseph) and Family Papers, LSU; Volume 9, ’List of Mothers, Births, and Deceased’, DeClouet (Alexandre) Papers, LSU; Anonymous Planters Ledger, LSU; Aime (Valcour) Slave Records, Louisiana State Museum, New Orleans; White (Maunsell) Papers, Southern Historical Collection, Manuscripts Department, Library of the University of North Carolina at Chapel Hill, Chapel Hill, NC (hereafter cited as UNC).

On disease, see Kiple and King, *Another Dimension to the Black Diaspora*, 23, 50–58, 151; Patterson, *Disease Environments of the Antebellum South*, 152–65; Savitt, *Medicine and

[16] For 14-hour shifts, assume slaves slept for seven hours, rested for three additional hours (7,12.2 kcal); for 16-hour shifts, assume slaves slept for six hours, rested for two additional hours (562.8 kcal). These estimates most probably under-record extra-work activities as cane cutters probably expended 9.8 kcal/minute, gathering canes and loading them onto wagons required from 5.5 to 6.8 kcal/minute, while labour in the sugar mill probably varied from moderate to heavy in Christensen’s energy classification. See, Passmore and Durnin, *Energy, Work, Leisure*, 31, 39, 72, 62, 75.

References

Kendall, John S. “New Orleans’ Peculiar Institution.” Louisiana Historical Quarterly 23 (July 1940).

Copyright of Slavery & Abolition is the property of Frank Cass & Company Ltd.. The copyright in an individual article may be maintained by the author in certain cases. Content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder’s express written permission. However, users may print, download, or email articles for individual use.